CONTENTS

Introduction 03
Who is this code for? 03

Chapter 1 04
Eligibility to compete 05
Technical Inspection 06
Minimum Age Requirements 07
Officials 08
Safety 09
Riders Equipment 11

Chapter 2 13
Downhill Skateboard Specifications 14

Chapter 3 15
Street Luge Specifications 16

Chapter 4 17
Classic Luge Specifications 18

Chapter 5 19
Downhill Inline Specifications 20

Chapter 6 21
Gravity Bike Specifications 22

Chapter 7 28
Drift Bike Specifications 29

Chapter 8 30
Skeleton Specifications 31

Chapter 9 32
Gravity Car Specifications 33

Chapter 10 38
Drift Trike Specifications 38

Chapter 11 45
Racing formats & procedures 46
Rider starting techniques 47
Start line infringements 48
Inclement weather 48
Flag distinction 48

Chapter 12 49
Rules of racing & rider etiquette 50

Chapter 13 51
Starting box 52
Starting grid 53
Contact 54
Disclaimer 55
THE UNIVERSAL CODE 2012/2013

INTRODUCTION

Since the early 1970’s, when Gravity Sports, i.e., Extreme Skateboarding, piqued the interest of both riders and the general public across America and Europe, individuals have stepped up to take on the responsibility for organizing events for “Gravity Extremists” of all the accepted disciplines of DH Skateboarding, Street Luge, Classic Luge, Gravity Bike and Inline Skate.

Various Organizations/Associations created a number of “Racing/Technical Rulebooks” for their respective groups, with no widely accepted “Universal Riders/Technical Rulebook” which would allow riders to compete at any event, regardless of organization/association, in the knowledge that their racing etiquette and equipment would meet all safety and technical standards.

WHO IS THIS CODE FOR?

The Universal Code has no alliance to any individual group, association or organization, and is a culmination of information, technical specifications, racing etiquette and safety rules derived from rulebooks already in existence, and the experiences of a number of longtime, Australian and International competitors and technical inspectors.

As all gravity disciplines have developed and grown over the years, the need for a universal code of safety, technical details and racing etiquette, which can be adopted for all global gravity events, has become apparent.

With the support of a major Global Insurance Company, “The Universal Code” recognizes and supports the efforts of all organizations/associations, both past and present, whom have contributed to the development of gravity sports across the world, and wishes to assist all legitimate organizers in the staging of legitimate gravity events, regardless of background and country of origin, for the present and into the future.

© The Universal Code
CHAPTER 1

ELIGIBILITY TO COMPETE AND WORK
TECHNICAL INSPECTION
MINIMUM AGE REQUIREMENTS
OFFICIALS
RIDERS EQUIPMENT
SAFETY
A Liability Waiver shall be signed by all riders, officials, track marshals and workers, as well as all attending medical staff and media prior to entering the event site. This Liability Waiver will be supplied by the event organizer, in association with the covering Insurance Company.

A mandatory practice period will be staged prior to racing. During this time all riders ability to safely race the proposed road/track in a single or pack rider scenario will be assessed by officials as well as other competing riders, i.e. peer group.

If competing riders have concerns regarding any aspect of another riders ability/riding/racing etiquette they are to make their concerns known to either the Event Director, Tech Inspector or the Technical Safety Official prior to the beginning of the Race Qualifying Period or the beginning of Racing, if qualifying has already taken place.

Pregnant woman are ineligible to practice, qualify or race at any event.

A Rider, by name, is the official entry. A registered rider will be the person attending Technical Inspection, Practice, Qualifying and Racing. No other person may stand in for the registered rider, nor will they sign the above mentioned Liability Waiver. If a substitution is made and discovered, both the registered rider and accomplice will be removed from the event site immediately.

An injured rider will be assessed by the Technical Safety Officer, under medical advisement, with the TSO having the final decision on the injured rider’s continuance in the said event.
ALL equipment which could be used during racing, which requires a “pass” from the Technical Inspector, shall be presented by the registered rider only, at the Official Tech Inspection for the proposed event. This includes Helmets, Gloves, Shoes, Respective Discipline Vehicle, Spare Trucks, Bearings, Wheels and all accessories allowed by the Tech and Safety Rules.

All required equipment must be passed by the Event Technical Inspector and carry a visible “pass” sticker or official marking before being allowed to be ridden and raced at the proposed event. A rider who rides/races “non-passed” equipment will be automatically disqualified and asked to leave the event site.

All questions regarding Technical Inspection will be asked of the Technical Inspector ONLY, prior to the Official Technical Inspection.

If any of a registered rider’s equipment does not pass Technical Inspection, they will be given the opportunity to rectify the issue, with the Technical Inspector reassessing the represented, rectified equipment at a set time and location. It is the responsibility of the registered rider and associates to rectify any recognized issues, not the Technical Inspector or staff. Technical Inspection will cover ALL aspects of safety, as well as "racing legalities" of all equipment.

Technical Specifications of Racing Equipment will be covered further in this manual.

The Technical Inspector, upon advice from the Official Technical Safety Officer, if a raised issue applies, has final say on eligibility of presented equipment. All race numbers will be "store bought", i.e., no hand written numbers will be allowed.
The minimum age for riders to race, if no juniors divisions apply, is 18+ at the proposed event. However, at the discretion of the Event Organizer, the Event Technical Safety Officer and the Insurance Company, and if no official Junior Division/Structure applies, 15 to 17 year olds may be nominated by their peers of their respective disciplines to register and attempt to qualify at the proposed event.

Guardians or Parents of any attending under 18+ riders will be required to sign the Liability Waiver and remain with the junior rider during the entirety of the event, or until the junior rider is no longer competing/riding.

Junior Divisions

<table>
<thead>
<tr>
<th>Junior</th>
<th>Age Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior 1</td>
<td>age 8 to 11.</td>
</tr>
<tr>
<td>Junior 2</td>
<td>age 12 to 14.</td>
</tr>
<tr>
<td>Junior 3</td>
<td>age 15 to 17.</td>
</tr>
</tbody>
</table>

Juniors would race in their respective age groups.

Junior 1 riders MAY race against Junior 2 riders, if a higher skill level is demonstrated to event officials and the individual rider is nominated to race/ride in the Junior 2 bracket by experienced Open division riders. Junior 1 riders CANNOT ride in Junior 3 or Open divisions.

Junior 2 riders MAY race against Junior 3 riders, if a higher skill level is demonstrated to event officials and the individual rider is nominated to race/ride in the Junior 3 bracket by experienced Open division riders. Junior 2 riders CANNOT ride in Open divisions.

Junior 3 riders MAY race against Open division riders, if a higher skill level is demonstrated to event officials and the individual rider is nominated to race/ride in the Open division by Open division riders.

All riders CANNOT race in a lower division.

Juniors would be required to maintain the same safety level of conduct, clothing and equipment as is placed upon the Open division riders, ie, leathers, helmets, etc.

The purpose of these conditions is to recognize that racing is a learned mental attitude, something which needs to be taught, not just assumed. “Safety for all riders, organizer’s, track workers, officials, medical staff, media and spectator’s is one of the boundaries this manual wishes to promote, in accordance with the covering Insurance Company”
Technical Safety Officer
The TSO is the Event Official who has control over all aspects of practice, qualifying and racing, during a proposed event. These cover all aspects of Track Conditions, Officials and Spectator Safety, as well as the actual decision’s regarding DQ’s and rider misconduct on and off the track.

Even though the TSO will have the final say on any area/issue under his/her responsibility, he/she will be bound to heed the advice of other Officials who have charge of certain areas, i.e. Start Line judge making Start Line Decision’s.

Start Line Judge
The SLJ will be the official who will make sure that no rider “jumps” the start, instantly indicating a “no start” by raising red flag to show all riders and officials that a “no start” has taken place. A rider who commits a “no start” twice in succession will be automatically DQ’d.

The Starter will be the official who controls the riders at the start line, and assumes responsibility for letting riders go during practice, qualifying and all racing. The starter will stand beside the startline, and will set riders by stating “Riders Ready”, then “Riders Set” (no riders will move forward after the Starter has said Riders Set) then “Go”. The Starter will not let the riders “Go” until all riders have set their position and no movement from riders occurs.

The Chief Scorer is the official who takes responsibility for charting all times during qualifying and controlling progression of rider’s positions and transferring to the official “Heats Sheets”.

Corner Marshall’s are the officials who control set corners on any given race course. They are responsible for rider racing infringements, as well as the control of track workers in rebuilding the hay bales if a crash occurs. If a rider infringement occurs, the Corner Marshall will relay the relevant information regarding the violation to the Finish Line Official.

The Finish Line Official is the official who has control of all aspects of the finish Line area, i.e. keeping the area clear for riders to cross the finish line in safety, relaying any “infringement information” to the TSO as well as transferring/recording all finishing places to the Chief Scorer.

The Technical Inspector is responsible for all aspects of the safety and legal aspects/specifications in relation to the Riders Equipment.

Note: The Technical Inspector can/will usually be the Technical Safety Officer.

Note: All Officials may have assistants to assist them in fulfilling their respective responsibilities. Assistants of any official do not have the ability to make decisions, of any kind, with regards to the responsibilities of that particular official.

Note: All Start Line, Corner Marshals and Finish Line judges are responsible for spectators and animals NOT being able to access the race track, and ensuring any animals, such as dogs, are on a leash at all times. If spectators refuse to follow this request, they will be asked to leave the proposed event race track immediately.
Insurance is a major factor in regards to staging any legitimate event, as Councils, Police and sundry Authorities require Insurance before allowing a hill to be given permission to be secured for an event.

In the present age of litigation, basic Public Liability Insurance is no longer offering enough insurance coverage to Organizer's; $20,000,000.00 Public/Property Liability; $5,000,000.00 Professional Indemnity and $1,000,000.00 Risk Management Insurance is the level recommended to stage a legitimate event using this Rulebook.

Risk Management Insurance is the level recommended to stage a legitimate event using this Rulebook.

This level of insurance IS available. Please note: This level of cover is only a recommendation to develop all gravity sport disciplines in a safe manner.

If an accident/crash occurs, the rider/s involved MUST have ALL equipment involved in the crash checked by the event Technical Inspector and passed as “safe” before continuing racing. Any adjustments which need to be made must be done so and presented to the Technical Inspector prior to racing. Any rider who fails to do so will be automatically DQ’d.

A minimum of two(2) Senior/Advanced First Aiders must be present at any legitimate event using this Rulebook.

This amount of medical support, as a minimum, is sufficient for up to 40 riders/racers. 40 and above riders require the presences of at least one(1) Ambulance and support personnel with as many Advanced/Senior First Aiders as is viable. Medics on site will be responsible for the medical attention given, movement and evacuation of any person requiring medical attention.

Racing WILL NOT continue whilst medics are heavily involved with a patient, and/or no medics are present at the proposed event.

Protective Barriers will be placed at strategic points along the course, i.e. to protect riders from any possible danger such as all rocks, sign posts, trees and any object which may cause injury if hit during the course of racing.

Protective barriers will also be used to keep spectators, as well as officials from entering the set race track whilst a “green flag” scenario is in action, i.e. the track is open and racing is taking place.

A minimum of a two(2) hay bale high barrier, or similar in protective functionality, must be between officials/spectators and the race track at all times. Air walls, as used in the Motor Sport Racing industry, at this time, are the ultimate form of barrier protection for riders. Rubber Tyres are NOT permitted, as the shape of the round tyres creates “catch” points for riders, in which riders can catch limbs causing serious injury.

Prior to the proposed events Technical Inspection sessions begin, and prior to all legal documentation, such as legal Waivers, are signed by the registered riders, and in the case of juniors their parents/guardians signing said waiver, ALL riders MUST walk the proposed event race track. If any rider, parent/guardian has any concerns with any aspect of the proposed event race track, they must make their concerns known to the Event Technical Safety Officer, who in turn will discuss any raised issues with the proposed event Organizers.
Alcohol and substances of abuse are strictly banned from any proposed event. Any rider who appears to be under the influence of either alcohol, drugs (recreational/script) and their “perspective” is impaired, will be asked to leave the proposed event site immediately and will take no further part in any racing/riding or promotional activities for the proposed event.

If any rider, parent/guardian has any concerns with any aspect of the proposed event race track, they must make their concerns known to the Event Technical Safety Officer, who in turn will discuss any raised issues with the proposed event Organizers.

© The Universal Code 10
Helmets must be a Full-face design, designed to withstand motorsport speed and pressure crashes, such as Moto-X, Motorcycle and Motor Sport Racing. DOT, Snell and Australian Standard rating required. “Aerodynamic Shells which fit over the top of an existing helmet will be allowed if structural integrity can be shown.

If structural integrity of an experimental helmet can be proved to be the same as or better than a “Rated” helmet, this will be considered with the Technical Inspector for the proposed event making the final decision on race ability.”

Note: Open face helmets will not be allowed under any circumstance.

Helmets must be worn as per manufacturers specifications. Helmet straps MUST be tested individually, as well as clipped together, using the “pull test”.

Helmets which have a separately attaching chin piece are prohibited. A helmet with gouges which are deep enough to allow the construction material to be seen will not pass Technical Inspection.

If a gouged helmet has been resprayed, with damage still obvious and not repaired, said helmet will not be passed by the Technical Inspector.

Helmets with ANY type of cracking, i.e. “onion ring/compression” or “webbing/stress” cracks will not be passed, and/or deemed safe to be used during the course of the proposed event.

“Aerodynamic” additions to the helmet design will be permitted, in as much as it can be proved that the addition to the design can be easily removed/broken off in a crash so as not to cause an injury of any description to the wearer.

Manufactured helmets which have an aerodynamic addition to the standard shape will not be allowed to be used if they cannot meet the above mentioned criteria.

Shatter proof, polycarbonate visors or goggles are required for all helmets. *Riders, of any discipline, will not be allowed to take part in ANY riding of the event track if eye protection with a “pass” from Tech Inspection is not worn, i.e. eyes must be covered with an approved visor or goggles.*

Leathers must be a one(1) or two(2) piece garment, and a minimum of 1.2mm thick. Thinner, advanced materials may be presented and passed at an event Tech Inspection, if the said material/garment can prove the same protective features as a 1.2mm thick leather suit/garment.

Non-leather stretch panels may be incorporated within the leathers, so much as to NOT cause a safety issue in an accident, and the non-leather panels are not a substitute to leather in areas such as the groin, knees, more than 5% of the back panel, 5% of the front area and elbows.

If a two(2) piece leather suit is presented, they must have a joining zip of solid construction joining the jacket to the pants securely.

Riders will ride with a (2)two piece suit joined at all times. An alternative to having a joining zip when wearing a (2)two piece leather suit, is to have a “bib and brace” style of leathers with the jacket over the top. This is an acceptable alternative to the standard (2)two piece leather suit.

Leathers must have no holes or unstitched seams, and all zips must be in working order. Velcro joiners will not be allowed as a substitute to zips under any circumstances. Leathers will be of a snug fit, suited to the rider.

Aerodynamic additions may be attached to leathers, in all disciplines, in as much that the additions will easily snap off during an accident and will prove no danger to any rider on the event race track. Additions must be made from Styrofoam or a similar material. They may be attached using Velcro or similar binding/bonding technique/materials.

Gloves will be made of leather, or any material which offers the same protection to 2mm thick leather gloves. Gloves will be secure on the hand, with no visible malfunction, such as holes, etc.
Shoes will be securely fitting, and being of a lace-up design only. Protection of the ankles, such as padding or covering, must be visible.

Low cut, secure shoes will be allowed, ONLY IF additional ankle protection is being worn by the rider at any stage of riding the proposed event race track. “Braking rubber” may be applied to the soles of the rider’s shoes, using a strong adhesive glue/compound only.

Additional elbow, knee and shin pads may be worn by the rider, although not mandatory.

Note: Jeans, T-Shirt, Elbow and Knee Pads ARE NOT suitable as a substitute for a one(1)/two(2) piece leather suit on event race tracks offering speeds ABOVE 35kph

Note: Speedsuits are allowed, as are aerodynamic attachments to leather suits, ONLY when the attachment proves to be of no danger to ANY rider on the course, and can be easily removed/snap off during the course of an accident.

Speedsuits must be worn over the top of a leather/Tech Inspection passed garment. A Speedsuit is NOT a substitute to a Tech Inspection passed leather/similar material race suit.
CHAPTER 2

DOWNHILL SKATEBOARD RACE
& TECHNICAL SPECIFICATIONS
Riders will ride/race in an "upright" position, however a rider riding with one knee on the board is acceptable as an aerodynamic racing style.

The DECK must be of a size within the overall specifications. Design has no bearing, in as much that no safety issues arise from said design, causing danger to ANY rider on the event race track. This includes the construction design.

The weight of the "complete" board must not exceed 7kg/15.4lb. (No allowance)

The length of the deck cannot exceed 140cm/55 inches. (No allowance)

The width of the deck cannot exceed 330mm/13 inches. (No allowance)

The trucks cannot exceed 330mm/13 inches when measured from axle outer edge to axle outer edge. Lean steer activated. Axle edges MUST not protrude past the outer edge of the wheels used, and present a danger, in any way, to any rider on the event race track.

Bearings of 608 Bearing Specifications are to be used only. Axle acceptance may be 8mm to 10mm. Any construction material is allowed, as long as material can withstand speeds of 10,000 rpm's minimum, and heat/pressure of 120kg's for a minimum of 10 minutes.

(Wheel diameter must not exceed 130mm. Wheels must be commercially available, with a minimum of 200 sets of 4 wheels sold in the commercial market place.

Lathing of the "roll diameter", ie, reducing the size of the purchased wheel (83mm to 76mm, as an example) is not allowed. However, placing a "arras", or bevel on the outer or inner edge of the wheel is acceptable.

A minimum of four(4) wheels are required. No mechanical braking, of ANY description, is allowed. Braking is achieved with the riders feet applying pressure to the race track surface, or sliding the race vehicle, ONLY.

A visible number must be applied to the rider's helmet, as a minimum form of "numbered identification". This number may be painted on, or sticker applied, and must be a minimum of 7.6cm/3 inches. Contrast colours must be used.

Numbers may be worn on any other part of the rider's body, in as much as it causes no danger to any rider on the event race track, and can be easily seen by event officials from a minimum distance of 30 feet/9 meters.
CHAPTER 3

STREET LUGE RACE &
TECHNICAL SPECIFICATIONS
Riders ride/race in the supine position, on their back with feet first. This will be the only acceptable riding style for this discipline.

The chassis will be of the "pegless" design, i.e. there will be no forward boom with footrests extending past the riders feet.

The design of the chassis must provide no danger to any rider on the event race track, for example, any catch or trapping points, allow a "nerf" or "bumper" to be attached securely to the front and rear striking areas, with no exposed bolts, welds, plates or similar which could cause injury or danger to any other rider.

Nerf/bumper material may be made of any foam/rubber which will sustain a direct impact with another rider, his/her luge or any hard surface without tearing or splitting. Nerfs/bumpers must be attached securely, with "pull ties" being acceptable in as much as the tie creates no danger to any rider on the event race track.

Any material may be used for the construction of the chassis, with the Technical Inspector, and if needs be the Technical Safety Officer, having the final say on experimental materials which may be deemed as dangerous.

Wood, steel and aluminium are the standard building materials, however, composite materials are also acceptable in as much as the method of construction does not invoke sharp edges, catch points, entrapment points, and the correct construction methods have been adhered.

If exotic composites, such as carbon/kevlar, are used in the construction of the luge chassis or any aerodynamic features, the exotic composite must be "sandwiched" between one layer of "csm" fiberglass.

A minimum of 50g Tissue is required to form this "sandwich" layup. Handles are to be securely joined to the chassis, either by bolt or weld. No part of the chassis shall enclose any part of the rider.

Aerodynamic features may be used as an integral part of the chassis construction, however these features must prove not to be a danger in any way, shape or form to any other rider on the event race track. The weight of the complete luge, ready to race, must not exceed 25kg/55.6kg. (No allowance)

The minimum length will be no shorter than 122cm/48 inches. (No allowance)
The maximum length will be no longer than 190cm/75 inches. (No allowance)
The maximum width of the chassis will be no wider than 61cm/24 inches. (No allowance)

Trucks will provide steering via lean activation. They will be no wider than the chassis with wheels attached ready for racing/riding. The axles will not protrude past the outer edge of the wheels attached.

Bearings will be the same as the Downhill Skateboard Specifications.

Wheels will be the same as the Downhill Skateboard Specifications, including the restrictions to wheel modifications.

A minimum of three(3) wheels are required. No mechanical braking is allowed, as the slowing of the luge is achieved by the rider applying pressure to the race track surface with his/her feet.

Ballast may be attached to the chassis of the luge only, NOT to the rider. Any ballast must be attached securely using bolts suitable in relation to the weight being attached.

Numbers specifications will be the same as the Downhill Skateboard Specifications.
CHAPTER 4
CLASSIC LUGE (BUTTBOARD)
RACE & TECHNICAL SPECIFICATIONS
A Classic Luge CANNOT be raced/ridden in a Streetluge race/heat. Classic Luge and Streetluge are two separate disciplines.

The basic premise of construction and affordability which is accepted world wide for this discipline shall remain as the core premise, i.e. a wood laminate board which can be purchased relatively cheaply from a skate shop and then raced.

Wood Laminate Definition: Layers of wood glued together using a polyester or epoxy resin or glue, and may incorporate thin, lightweight fiberglass as part of the bonding agent. Carbon may be used as the composite sheet in the construction scenario only.

The maximum weight of the fiberglass sheet allowed to be used is 2oz/600gm csm, this weight indicating the thickness of the fiberglass when bought from a supplier.* A solid piece of wood may also be used, as opposed to "layers" of veneer's.

The deck may have foam padding, non-aerodynamic stiffeners on the bottom and skateboard style finger rails underneath the deck. "Handles", of any description, are not permitted.

A design may have a "broken line plan shape", i.e. a non continues curve, in as much as the design offers no points of danger to any rider on the event race track.

The weight of a complete board, ready for racing/riding, must not exceed 6.5kg/14.3lb's. (No allowance)

The maximum length of a Classic Luge deck must not exceed 125cm/48 inches. The maximum width of a Classic Luge deck is 33cm/13 inches.

Trucks must meet the same criteria and specifications as previous disciplines in this manual.

Bearings must meet the same criteria and specifications as previous disciplines in this manual.

Wheels must have a maximum diameter of 70mm, and to be deemed as commercially available having a minimum of 200 sets of four(4) wheels sold on the commercial marketplace.

A minimum of four(4) wheels per deck are required. Use of "lathed" wheels on the rolling diameter is not allowed, ie, 76mm wheels being lathed down to 70mm in order to be raced in this discipline.

However, a "arras", or bevel, may be placed on the outer and inner edge of the wheel if desired.

A minimum ride height of 8cm/3 1/8 inches is required. For example, a height check block must be passed under every part of the deck without touching any part of the deck, including mounting hardware, stiffeners and fingertip rails.

No mechanical braking is allowed. Braking is achieved by the rider applying pressure to the race track surface with the soles of his shoes only.

Numbers are the same for this discipline as they are for previously mentioned disciplines.
CHAPTER 5

DOWNHILL INLINE RACE
& TECHNICAL SPECIFICATIONS
All styles of “Speed skates/skate ski’s” are allowed, in as much as constructual integrity can be shown.

Bearings must be to manufacturers specifications specific to the individual design/style of vehicle.

All straps/methods of securing to foot, will be tested using the “pull test”.

Aerodynamic attachments are allowed, in as much that the attachment can be easily snapped off in an accident, and offers no danger to any other rider on the event race track.

Numbers are the same for this discipline as they are for previously mentioned disciplines.
CHAPTER 6

GRAVITY BIKE SPECIFICATIONS
For the purposes of accurately describing the various functional attributes, design features and manufacturing techniques used in each of the two classes of Gravity Bikes described within this document, we have provided a brief definition of terms that should be read in the context of the specifications themselves.

It is our hope that all riders, competitors and developers accurately interpret the terms so that the specifications provided can be adhered to when put into the context of competitive Gravity Bike racing.

It is our intention that an appropriate level of regulation be brought to the competitive environment and that as a consequence, a fair and competitive racing culture is maintained and promoted.

The following specifications are not intended to be discriminatory or limiting and it is our hope that all schools of thought have been accommodated.

Those who have compiled the following specifications have done so in the spirit of innovation, with respect to the historical origins of the sport and with the intention of promoting and encouraging participation of new and existing riders.

We expect that the following specifications continue to be developed and augmented over time to allow the discipline of Gravity Bike racing to change and adapt to new challenges, new technologies, new riding styles and new race circuits as they become available.
Stock Bikes & Custom Bikes
For the purposes of clearly distinguishing between the two classes of Gravity Bikes presented within this document, the terms ‘Stock Gravity Bike’ and ‘Custom Gravity Bike’ have been chosen to describe the unique differences in the design and manufacture of the structural frames used as the basis of each respective style of bike.

For the purposes of this specification, the frame or structural component of the bike is the only component of the bike that denotes the competitive racing classification of the bike.

Additional components or functional accessories such as kneeler plates, seating mounts or supporting devises are, by themselves, not enough to provide a distinction between a bike requiring classification at any given event.

Stock Gravity Bikes
For the purposes of the following specifications, a ‘Stock Gravity Bike’ can be defined as any bike that utilises a traditional and/or commercially manufactured ‘BMX Frame’ as the structural component or frame of the bike.

Though the term BMX (as the abbreviation for Bicycle Motorcross) originally connotes a bicycle intended for ‘BMX racing’ the term ‘BMX’ is used in this context to encompass a variety of uses such as gravity bike, dirt, vert, park, street and flatland disciplines of BMX.

Custom Gravity Bike
For the purposes of the following specifications, a Custom Gravity Bike is any bike that utilises a unique and specifically or deliberately manufactured frame as the structural basis of the bike or any frame other than a traditional or commercially available BMX frame.

Custom Gravity Bike frames can be manufactured to resemble traditional BMX frames, but by the virtue of their origin of manufacture, will not be enough to classify them as a ‘Stock Gravity Bike’.

Custom Gravity Bike frames by the virtue of their design, can typically include or be extended to include, rear swing arms or front fork components as required by the design of the frame.

For the purposes of these specifications ‘Custom Gravity Bikes’ can include these components as required to support the design or structural integrity of the frame and are still classified as ‘Custom Gravity Bikes’.

Fairings
A bicycle fairing is a full or partial covering for a bicycle to reduce aerodynamic drag or to protect the rider from the elements. A bicycle with a full fairing is a regular bicycle fitted with an extra component, as opposed to a velomobile which is a permanently enclosed bicycle.

Number plates
Number plates are typically additional components added to a gravity bike to identify and present a riders racing number or current national or international riding ranking.

Kneeler pads or kneeler boards
Kneeler pads or kneeler boards are typically structural additions to a gravity bike used to support the weight of a rider by placing his or her knees upon when in the riding position. Kneeler pads or boards allow a rider to disperse weight which may have otherwise be placed upon rear mounted foot pegs.

Ballast weight
Ballast weight is something that is added to a Gravity Bike to alter its performance. Ballast can be added to change load distribution, handling characteristics or increased mass in a variety of combinations and is typically used to increase the overall weight of a bike.

Wheelbase
The wheelbase of a Gravity Bike is the distance between the centers of the front and rear axles or the rotational centers of each wheel.
THE UNIVERSAL CODE 2012/2013

DEFINITIONS

Bike classification & competitive racing classes
For the purposes of the following specification it should be noted that the only level of classification provided is directed solely at the make or model of bike used in competitive racing.

Any method of classification relating to the running of an event such as points classification, skill classification or time classification is a matter for individual organizations or event organizers.

Classification
For the purposes of racing classification, there are two main classes of Gravity Bikes permitted to race competitively at this time;
1. ‘Stock Gravity Bikes’
2. ‘Custom Gravity Bikes’

Each class should reflect the following specifications so that an appropriate level of regulation be brought to the competitive environment and that as a consequence, a fair and competitive racing culture is maintained and promoted.

Each class accommodates an additional ‘Fairing’ classification in order to maintain fair and even competition within each class. For clear definition of what classifies as a “Fairing” please see the following specifications on “Fairings”. The maximum amount of classification at any given event could therefore be described as following:

1. Stock Gravity Bike (No fairing)
2. Stock Gravity Bike (Fairing)
3. Custom Gravity Bike (No fairing)
4. Custom Gravity Bike (Fairing)

Please note that should an Event Organiser, Technical Inspection Officer or Technical Safety Officer at a competitive event determine that there are not enough eligible bikes to run in a given classification as outlined above, then each official will have at their discretion, the power to reclassify a rider and Gravity Bike at the time entry, prior to inspection, at inspection and prior to the commencement of racing.

Furthermore each officer or event organiser will have the power to request that ‘appropriate’ and ‘reasonable’ modifications be made (eg. the removal of fairing) to ensure that the bike and rider are classified in accordance with event classifications and rider numbers.

‘Appropriate’ and ‘reasonable’ modifications will/can only be requested where there is no temporary or permanent damage made to a Gravity Bike. Riders will be required to undertake the required modifications so as to ensure no damage is made to the Gravity Bike and that their bike conforms to the classification required of the event.

Each rider must then resubmit their bike to the Technical Inspection Officer or Technical Safety Officer for Technical approval. Officials must provide a rider with appropriate and sufficient time in order to undertake the required changes of classification, no later than 1 hour before technical inspection closes.
The following specifications pertain to all of the classes as outlined. Please consider these specifications when building, developing or preparing your Gravity Bike for competition.

Frames

All Gravity Bike frames must be free of cracks and rust. Frames may be either “round” or “box section” design. Rigidity and strength of design must sustain the weight of the registered rider of + 50kg’s.

These factors must be proved to the Technical Inspector of the proposed event by the registered rider by sitting on the Gravity Bike and “bouncing” on the bike in order to demonstrate the frames structural integrity.

A Technical Inspector at a given event may, determine other methods of ensuring a frames structural integrity (without damage or stress to the frame) and this will be at their discretion.

Weight

The total weight of the complete, race/ride ready Gravity Bike cannot exceed 34kg/75lbs. (No allowance)

Weight ballast

Solid weight ballast may be secured to the Gravity Bike frame via bolts suitable to safely secure said ballast. See above specification concerning total weight requirements to determine your appropriate threshold of additional weight ballast. Body ballast is not permitted under any circumstances. Technical Inspection Officers are charged with the responsibility to make thorough inspections of weight installation to make sure all meet safety requirements.

Wheelbase

The wheelbase of a Gravity Bike cannot exceed 127cm/50 inches.

Fairings & Fairing classification

For the purposes of the following specifications, custom or standard fairings, made of any material and that provide any aerodynamic advantage or reduce aerodynamic drag should be classified as ‘fairings’ by the Technical Inspection Officer or Technical Safety Officer at any organized competitive event.

Should an Event Organiser, Technical Inspection Officer or Technical Safety Officer determine that there are not enough eligible bikes to run in a given classification as outlined above, then each will have at their discretion, the power to reclassify a Rider and Gravity Bike at the time entry, inspection or prior to the commencement of the event.

Furthermore each officer or event organiser will have the power to request that ‘appropriate’ and ‘reasonable’ modifications be made (eg, the removal of fairing) to ensure that the bike and rider are classified in accordance with event classifications and rider numbers.

‘Appropriate’ and ‘reasonable’ modifications will/can only be requested where there is no temporary or permanent damage made to a Gravity Bike.

Riders will be required to undertake the required modifications so as to ensure no damage is made to the Gravity Bike and that their bike conforms to the classification required of the event. Each rider must then resubmit their bike to the Technical Inspection Officer or Technical Safety Officer for Technical approval.

Fairing classifications

Front mini fairings are only permitted to be used in the “Fairing” classes as outlined. Front mini fairings are to be no larger than 23cm/10 inches X 30.5cm/12 inches. Their mounting position, design and shape are at the rider’s discretion.

Rear fairings are only permitted to be used in the “Fairing” classes as outlined. When used, the rear fairing cannot exceed the width of the rider, and cannot extend further than 60cm/24 inches past the trailing edge of the rear tyre, with a maximum width or 15cm/6 inches. Their mounting position, design and shape are at the rider’s discretion.

Enclosed frame fairings are only permitted to be used in the “Fairing” classes as outlined. Enclosed Frame Fairings are to be no larger than 23cm/10 inches X 30.5cm/12 inches on either side of the bike frame. Their mounting position, design and shape are at the rider’s discretion.

Side fairings or kneeler fairings are those fairings which provide aerodynamic advantage in front of a riders knees and are only permitted to be used in the “Fairing” classes as outlined. Side Fairings or Kneeler Fairings are to be no larger than 23cm/10 inches X 30.5cm/12 inches on either side of the bike frame. Their mounting position, design and shape are at the rider’s discretion.
Full fairings or Motorcycle Style Fairings that enclose both the 'front', 'side' and 'underneath' of a bike and rider and are only permitted to be used in the "Fairing" classes as outlined. Their mounting position, design and shape are at the rider's discretion.

Number plate fairings are typically additional components added to a gravity bike to identify and present a rider's racing number or current national or international riding ranking and are only permitted to be used in the "Fairing" classes as outlined. Number Identification at a competitive event should therefore be made on both sides and back of a rider's helmet and/or in accordance with the Technical Inspection Officer or Technical Safety Officers requirements.

Fairing finishing All fairing edges must be covered or, as a minimum safety standard, sanded or polished so the edge of the fairing is "rounded". No fiberglass "Fibres", "Knocks", "sharpness" or any "abrasiveness" which may cause danger to any rider on the event race track are permitted. These factors must be proved to the Technical Inspector of the proposed event by the registered rider and subsequently tested by the Technical Inspector by running a bare hand over the edge of fairing.

Fairing construction Fairing construction may be of any material which offers the same protection and safety to any rider using the event race track that a standard "4oz composite construction/layup" offers. "Exotic composite" fairings are permitted, however Carbon Fibre and Carbon Fibre/Kevlar combinations MUST be used in a "sandwich" construction method, i.e. a layer of csm, which may include 50g Tissue, must be layed on either side of the "exotic" material, thus forming a "sandwich" layup. Aluminium fairings are permitted, with a minimum wall thickness of 2mm.

Brakes
All style/design Gravity Bikes must have working front and rear brakes. Disc brakes are highly recommended, however not mandatory. The basic requirement for any braking system presented to the event Technical Inspection is that the rider MUST be able to bring the Gravity Bike to a full stop, from a speed of 100kph/60mph, within 100m/300ft. Custom braking systems are permitted, however it is up to the rider to prove the braking ability of the custom braking system to the event Technical Inspector, either prior to, or at the time of, the proposed event Technical Inspection.

Wheel size
Wheel size cannot exceed 51cm/20 inches.

Wheel coverings
Disk wheels are allowed on the rear wheel only due to the safety issues presented when trying to control or steer the Gravity Bike such as cross winds and the effects of centrifugal force on the front wheel of a Gravity Bike.

Wheel design
A minimum of three(3) spokes/wheel are required, and the integrity of this style of wheel design must be proved to the event Technical Inspector either prior to, or at the time of, the proposed event Technical Inspection.

Tyre's
Tyre's must be in good condition, with no cracks or excessive wear visible on any part of the tyre. Custom tyre's are permitted, however structural integrity of custom/non-commercial tyre's must be proved to event Technical Inspector, either prior to, or at the time of, the proposed event Technical Inspection.

Foot pegs
Foot pegs, at or near the rear axle, or kneeler pads/boards, are required to provide stability for the rider during competition. Foot pegs minimum size requirement is 3cm/1 3/16 inches.
Kneeler pads or kneeler boards
Kneeler pads or kneeler boards must have no sharp edges, with no restrictions on material used, in as much as the construction material offers no danger to any rider on the proposed event race track.

Kneeler pads or kneeler boards must be proved to event Technical Inspector, either prior to, or at the time of, the proposed event Technical Inspection to provide no deliberate aerodynamic advantage through design or application. Should a Technical Inspector determine that the kneeler pads or boards provide such advantage then the Technical Inspector may at their discretion change the classification of the Gravity Bike based on the Fairing information provided within this specification.

Handlebars
Handlebar design is open to the rider, in as much as said design proves no danger to any rider on the proposed event race track. The handlebars cannot exceed the width of the registered rider racing said Gravity Bike. Handle bar design must be secured via bolts suitable to safely secure said Handlebars.

Seating position and design
Seat design is open to the rider, in as much as the seat design/material proves no danger to any rider on the proposed event race track. The seat must be securely mounted to the Gravity Bike chassis, via a bolt system suitable to safely secure said seat. Tape, of any description, and/or zip ties are not allowed as a system of securing the seat to the Gravity Bike.

Number Identification
Number Identification at a competitive event should be made on both sides and back of a riders helmet and/or in accordance with the Technical Inspection Officer or Technical Safety Officers requirements.

Numbers must be a minimum of seven point six centimeters (7.6cm / 3”) tall. The number area and number must be of contrasting colours and highly visible from six meters (6m / 20’) away. Some promoters may issues a bib or bib panel with a number other then you’re competitive racing number or international rider ranking.
CHAPTER 7

DRIFT BIKE RACE
& TECHNICAL SPECIFICATIONS
Eligibility
Any commercially available bicycle is permitted to race in this discipline, in as much as the design meets all the specifications regarding Tyre condition, Wheel design, and Braking systems.

Handlebars are as per design/manufacturers specifications.

Any customization or variance on manufacturers specifications and design, for the advancement of this discipline, must meet all Gravity Bike safety criteria, regarding "bounce" testing either prior to, or at the time of, the proposed event Technical Inspection.

Number requirements are the same as Gravity Bike disciplines.
CHAPTER 8

SKELETON RACE
& TECHNICAL SPECIFICATIONS
Skeleton is a growing discipline, and as such the specifications mentioned here are designed to allow the discipline to grow/develop in a safe manner, as well as give guidance to new riders. Skeleton is ridden with the rider laying on his/her stomach, headfirst. This is the only style acceptable for this discipline.

The deck can be made from laminated veneers, or composite materials, so as to allow flex in the deck to allow adequate braking. Strength of the deck will be demonstrated by using the “bounce” test to prove integrity of construction as well as adequate braking “flex”.

All edges must be rounded and polished, in as much as the edges prove no danger to any rider on the event race track.

Maximum weight of a board, ready to race, is 25kg/55.6lbs

Maximum length of the deck is 170cm/67 inches.

Maximum width of the deck is 35.5cm/14 inches, however rear wheel guards and front elbow supports may extend this specification to a maximum of 50.5cm/20 inches.

Elbow supports and rear wheel guards may be constructed from aluminium or composite materials only, with all exposed edges sanded and covered with “pinchweld” or similar protective edging.

Front aerodynamic features (add-ons), are permitted, with 2mm walled aluminium or 4oz composite/equivalent being the permitted construction materials.

The “T” tail-piece may be constructed from wood, composite materials, aluminium or a combination of either of these materials. All edges must be rounded, and all surfaces must be smooth, in as much as they offer no danger to any rider on the event race track.

Braking is achieved by “flexing” the board causing a rubber brake pad, positioned under the deck, to come into controlled contact with the race track surface.

Brake pad specifications are a minimum of 200mm/8 inches X 250mm/10 inches X 10mm thick.

The brake pad must be glued to the underside of the deck using a flexible contact adhesive. If the rubber pad is attached to a separate backing board, this backing board will be secured to the underside of the deck using a bolt system, in such a manner as to offer to danger to any rider on the proposed event race track.

Number requirements are the same as previous disciplines.
Introduction
Gravity Cars are a separate gravity discipline when compared to Billy Carts. The following build specifications are to assist all builders and racers of Gravity Cars, to maintain a fair and cohesive guide to all participants, so no advantage may be given to any individual rider/driver, or an advantage to any specific design of Gravity Car.

This section deals with the construction of the respective Gravity Car designs, whether it be the “Standard” Class, the “Custom” Class or the “ZX” Class only, as ALL other requirements previously mentioned in this document apply: Safety, Tech, Age, Race Rules, etc.

Standard Class: A “Standard Class” Gravity Car is a standard Go Kart rolling chassis, recognized by it’s manufacturer production name, ie, Azzurra.

Rolling Chassis Length: As per manufactured chassis: “As per manufacturers specifications”. Chassis length will be taken as an overall chassis length. Standard “bumper plastic pods” are allowed, if they are forming an integral part of the overall construction of the “outer shell”. Bumper pods will not be included in the overall chassis length. Bumper pods will not be an “add on” to the completed “outer shell”

Steering: Steering will be as per manufacturer specification. Rack and pinion style steering is the standard style of steering in this class, however, if a manufacturer releases a production go kart rolling chassis with a different style of steering, it will automatically fall into this class.

The ONLY acceptable alteration to the steering is that it maybe lowered to the lowest point on the steering column support arch/neck. Steering wheels maybe altered to suit the position of the rider/driver, ie, cut to allow a safe, comfortable position when the rider/driver is in the race/ride position.

Brakes: Braking systems will be as per manufacturer specifications. No additional braking systems will be allowed.

Wheels/Tyres: Rims and tyres will be as per manufacturer specifications. Pneumatic tyres will be the only acceptable tyre, unless it can be shown that the manufacturer designated that solid tyres are required for their respective production gokart.

Rear Axle: In a Standard Class rolling chassis, the rear axle will be a “live” rear axle, ie, the two rear wheels are attached to the rear axle and rotate in unison with each other, they do not have an independent movement ability.

A “Custom Class” rolling chassis, with independent rear wheel movement, MAY compete in the “Standard Class” division, if the “Custom Class” rolling chassis rear axle can be LOCKED in position, to turn the rear axle into a “live” rear axle.

The “Custom Class” gravity car MUST meet all other “Standard Class” specifications in order to compete in this division. “Castor” degree’s and “Toe in/Toe out” may be altered to suit the rider/driver in this division.

Seat: As per manufacturer specifications. The seat may be cut to allow the rider/driver to lay further down within the car, however no “custom made” seat will be allowed.
Rider Restraints: All rolling chassis in this class MUST have a four (4) point, or five (5) point, rated, racing harness, securely attached to the chassis. A bolt or clamp system may be used to secure the harness, if it can be shown that the “anchoring system” is in no way detrimental to the integrity of the chassis, and can sustain a double handed wrenching movement by the Tech Inspector to test integrity of the mechanism.

Roll Cage/Column: A “roll cage” or “column” must be placed behind the rider/driver’s head, and be securely attached to the frame of the rolling chassis. This protective cage/column may be welded, bolted or clamped to the frame, and must sustain a vigorous shaking by the Technical Inspector.

The roll cage must be of a “U” shape, or the optional column must be strong enough to sustain a “roll over” crash, while at the same time being high enough to allow room between the helmeted head of the rider/driver and the ground, when the rolling chassis is in the upturned position. Windscreens, made from Polycarbonate, are allowed, as long as they are deemed safe by the event Tech Inspector, and will cause no injury to any other competitor at said event.

Underpan: An “underpan” will be fitted to the underside of the rolling chassis, with only cutouts for the wheels permitted. The only exception to this requirement is if the disc’s from a “disc brake” system protrude through the underpan. The underpan is to be constructed of the same material as the outer shell.

Shell Construction Materials: Wood, composites, polycarbonates and plastics are acceptable materials to construct the outer shell, in as much it can be shown the combination of shape and material can cause no injury to any other competitor or persons at said event. Metal of any description is not allowed as a suitable outer shell construction material.

Maximum Weight: A maximum weight of 70kg is allowed, however, any “loading” of a gravity car after it passes through Tech Inspection will result in the rider/driver, as well as the said vehicle, being automatically disqualified from said event.

Maximum Overall Length: Maximum overall length, from the absolute front to the absolute rear of the gravity car is 2,400mm.

Maximum Ride Height: This will be as per the manufacturer design, however there is still the ability for the height of the gravity car to be adjusted. The maximum ride height for this class will be 50mm.

This measurement will be taken when the gravity car is on a level inspection table, or appropriate level ground, between the said table or ground, and the lowest section of the underpan. Brake disc’s may be lower than this measurement, and shall not be the deciding measurement component.

Overall Gravity Car Height: The overall gravity car height will 500mm. This measurement will be taken when the gravity car is on a level inspection table, or appropriate level ground. This measurement will be from the level ground/table, and the highest point of the outer shell of the gravity car. The only “aspect” of the gravity car which is allowable above this height is the roll cage/column.
Custom Class: Due to the very nature of this class, the build specifications expressed are designed to give some basic “boundaries” for builders, while at the same time allowing builders to experiment, in a safe fashion, with aerodynamic shapes as well as other aspects of a Custom Class Gravity Car.

Rolling Chassis: The rolling chassis in this class may be constructed using aluminium, light steel or composites. The cross section of the materials may be tubular round, tubular oval or box section.

A “strength test” will be conducted at any event Tech Inspection by the said event Tech Inspector or associate standing approximately in the center of the presented gravity car and slightly bouncing. If the chassis “flexes” beyond 10mm, the chassis will not pass said events Tech Inspection. To measure chassis flex, a ruler will be held against the bottom edge of the chassis and the ground, while the flex/bounce test takes place.

Steering: Steering may be “Rack & Pinion” or a “Push/Pull” system. An alternative steering system may be presented for Tech Inspection at a said event, and will pass Tech, IF the system offers the required steering control so as not to cause injury to any rider/driver or person while the gravity car in question is racing, or during any time spent on the said events designated race course.

The mechanical integrity of the steering system must also show it can withstand the rigors of racing. The Tech Inspector will check all cables, tubing, nuts and bolts associated with any aspect of the steering system in question.

Brakes: Brakes may be disc or drum brakes, however a disc brake system is highly recommended. A minimum of one (1) brake system must be present, and in perfect working order.

The Tech Inspector will ask the rider/driver to sit in the said gravity car, and apply pressure to the brake pedal/lever, while the Tech Inspector or associate attempts to move the said gravity car forward or backwards, forcing the wheels to rotate. If the wheels do not rotate, the said braking system will receive a Pass by the Tech Inspector.

Wheels/Tyres: The tyres for this class will be pneumatic in nature, with rims suited to said tyres. Maximum height of each tyre will be no greater than 250mm. Minimum contact patch of the tyre on the said race track surface will be 30mm.

When the wheels are attached to the presented gravity cars axles or axle stubbs, the securing bolt/s will no protrude past the outer surface of the tyres, so as not to cause injury to any other rider/driver or person at said event. Rear Axle: In the “Custom Class”, the rear axle may be “live”, with both wheels rotating in unison, or the rear axle may enable independent movement of the rear wheels.

Rider Restraints: All rolling chassis in this class MUST have a four (4) point, or five (5) point, rated, racing harness, securely attached to the chassis. A bolt or clamp system may be used to secure the harness, if it can be shown that the “anchoring system” is in no way detrimental to the integrity of the chassis, and can sustain a double handed wrenching movement by the Tech Inspector to test integrity of the mechanism.

Roll Cage/Column: A “roll cage” or “column” must be placed behind the rider/driver’s head, and be securely attached to the frame of the rolling chassis. This protective cage/column may be welded, bolted or clamped to the frame, and must sustain a vigorous shaking by the Technical Inspector.

The roll cage must be of a “U” shape, or the optional column must be strong enough to sustain a “roll over” crash, while at the same time being high enough to allow room between the helmeted head of the rider/driver and the ground, when the rolling chassis is in the upturned position.

Seat: The seat may be of any design/ construction material which assists the rider/driver to control said gravity car, while allowing the required safety harness to be easily positioned to fulfill it’s required responsibility.

Underpan: An “underpan” will be fitted to the underside of the rolling chassis, with only cutouts for the wheels permitted. The only exception to this requirement is if the disc’s from a “disc brake” system protrude through the underpan. The underpan is to be constructed of the same material as the outer shell.

Shell Construction Materials: Wood, composites, polycarbonates and plastics are acceptable materials to construct the outer shell, in as much it can be shown the combination of shape and material can cause no injury to any other competitor or persons at said event. Metal of any description is not allowed as a suitable outer shell construction material. Maximum Weight: A maximum weight of 70kg is allowed, however, any “loading” of a gravity car after it passes through Tech Inspection will result in the rider/driver, as well as the said vehicle, being automatically disqualified from said event.
MAXIMUM OVERALL LENGTH: The maximum overall length, from the absolute front to the absolute rear of the gravity car is 2.400mm.

MAXIMUM RIDE HEIGHT: The maximum ride height for this class will be 70mm. This measurement will be taken when the gravity car is on a level inspection table, or appropriate level ground, between the said table or ground, and the lowest section of the underpan. Brake disc’s may be lower than this measurement, and shall not be the deciding measurement component.

OVERALL GRAVITY CAR HEIGHT: The overall gravity car height will be 600mm. This measurement will be taken when the gravity car is on a level inspection table, or appropriate level ground. This measurement will be from the lowest point of the outer shell of the gravity car. The only aspect of the gravity car which is allowable above this height is the roll cage/column.

ZX CLASS: The "ZX Class" is a simpler design of gravity car, incorporating some aspects of streetluge in appearance, while still maintaining the "control and drivability" of the gravity car discipline.

ROLLING CHASSIS: The ZX Class may use either a "Standard" or "Custom" Class rolling chassis. If a "Custom" Class chassis is presented for Tech Inspection, a "strength test" will be conducted at any event Tech Inspection by the said event Tech Inspector or associate standing approximately in the center of the presented gravity car and slightly bouncing.

If the chassis “flexes” beyond 10mm, the chassis will not pass said events Tech Inspection. To measure chassis flex, a ruler will be held against the bottom edge of the chassis and the ground, while the flex/bounce test takes place.

STEERING: Steering may be "Rack & Pinion" or a "Push/Pull" system. An alternative steering system may be presented for Tech Inspection at a said event, and will pass Tech, IF the system can prove it offers the required steering control so as not to cause injury to any rider/driver or person while the gravity car in question is racing, or during any time spent on the said events designated race course.

WHEELS/TYRES: The tyres for this class will be pneumatic in nature, with rims suited to said tyres. Maximum height of each tyre will be no greater than 250mm. Minimum contact patch of the tyre on the said race track surface will be 30mm.

When the wheels are attached to the presented gravity cars axles or axle stubbs, the securing bolt/s will no protrude past the outer surface of the tyres, so as not to cause injury to any other rider/driver or person at said event.

REAR AXLE: In the "ZX Class", the rear axle may be "live", with both wheels rotating in unison, or the rear axle my enable independent movement of the rear wheels.

THE MECHANICAL INTEGRITY of the steering system must also show it can withstand the rigors of racing. The Tech Inspector will check all cables, tubing, nuts and bolts associated with any aspect of the steering system in question.

BRAKES: Brakes may be disc or drum brakes, however a disc brake system is highly recommended. A minimum of one brake system must be present, and in perfect working order.

The Tech Inspector will ask the rider/driver to sit in the said gravity car, and apply pressure to the brake pedal/lever, while the Tech Inspector or associate attempts to move the said gravity car forward or backwards, forcing the wheels to rotate. If the wheels do not rotate, the said braking system will receive a Pass by the Tech Inspector.
Rider Restraints: All rolling chassis in this class MUST have a four (4) point, or five (5) point, rated, racing harness, securely attached to the chassis. A bolt or clamp system may be used to secure the harness, if it can be shown that the “anchoring system” is in no way detrimental to the integrity of the chassis, and can sustain a double handed wrenching movement by the Tech Inspector to test integrity of the mechanism.

Roll Cage/Column: A “roll cage” or “column” must be placed behind the rider/driver’s head, and be securely attached to the frame of the rolling chassis. This protective cage/column may be welded, bolted or clamped to the frame, and must sustain a vigorous shaking by the Technical Inspector.

The roll cage must be of a “U” shape, or the optional column must be strong enough to sustain a “roll over” crash, while at the same time being high enough to allow room between the helmeted head of the rider/driver and the ground, when the rolling chassis is in the upturned position.

Seat: The seat may be of any design/construction material which assists the rider/driver to control said gravity car, while allowing the required safety harness to be easily positioned to fulfill its required responsibility.

Underpan: An “underpan” will be fitted to the underside of the rolling chassis, with only cutouts for the wheels are permitted. The only exception to this requirement is if the disc’s from a “disc brake” system protrude through the underpan. The underpan is to be constructed of the same material as the outer shell.

Shell Construction Materials: Wood, composites, polycarbonates and plastics are acceptable materials to construct the outer shell, in as much it can be shown the combination of shape and material can cause no injury to any other competitor or persons at said event.

Metal of any description is not allowed as a suitable outer shell construction material. Maximum Weight: A maximum weight of 70kg is allowed, however, any “loading” of a gravity car after it passes through Tech Inspection will result in the rider/driver, as well as the said vehicle, being automatically disqualified from said event.

Maximum Overall Length: Maximum overall length, from the absolute front to the absolute rear of the gravity car is 2,400mm.

Maximum Ride Height: The maximum ride height for this class will be 70mm. This measurement will be taken when the gravity car is on a level inspection table, or appropriate level ground, between the said table or ground, and the lowest section of the underpan.

Brake discs may be lower than this measurement, and shall not be the deciding measurement component.

Overall Gravity Car Height: The overall gravity car height will 500mm. This measurement will be taken when the gravity car is on a level inspection table, or appropriate level ground. This measurement will be from the level ground/table, and the highest point of the outer shell of the gravity car.

The only “aspect” of the gravity car which is allowable above this height is the roll cage/column.

ZX Class Shell Design: This class incorporates many of the other class requirements, however the greatest difference is in the shell design.

The ZX Class is identifiable by it’s front “Aero Nose Piece”. The rolling chassis requires an “underpan”, however the outer shell design consists of a “nose shell section” which covers the legs and steering column only.

The ZX Class must be encapsulated for aesthetics, however no side or rear section of the outer shell is required. The ZX Class design must have no protruding aspects which may cause injury to any rider/driver or person during any racing or track time at said event.
For the purposes of accurately describing the various functional attributes, design features and manufacturing techniques used in each of the three classes of Drift Trikes described within this document, we have provided a brief definition of terms that should be read in the context of the specifications themselves.

It is our hope that all riders, competitors and developers accurately interpret the terms so that the specifications provided can be adhered to when put into the context of competitive Drift Trike event. It is our intention that an appropriate level of regulation be bought to the competitive environment and that as a consequence, a fair and competitive event culture is maintained and promoted.

The following specification are not intended to be discriminatory or limiting and it is our hope that all schools of thought have been accommodated.

Those who have compiled the following specifications have done so in the spirit of innovation, with respect to the historical origins of the sport and with the intention of promoting and encouraging participation of new and existing riders.

We expect that the following specifications continue to be developed and augmented over time to allow the discipline of Drift Triking to evolve and adapt to new challenges, new technologies, new riding styles and new event locations as they become available.

Stock Drift Trike, Modified Drift Trike & Custom Drift Trike
For the purpose of clearly distinguishing between the three classes of Drift Trike presented within this document, the terms “Stock Drift Trike”, “Modified Drift Trike” and “Custom Drift Trike” have been chosen to describe the unique differences in the design and manufacture of the structural frames used in the basis of all respective class of trike.

For the purpose of this specification, the frame or structural components of the Trike is the only component of the Trike that denotes the competitive class classification at any given event.

Stock Drift Trike
For the purpose of the following specification, a “Stock Drift Trike” can be defined as any Trike that utilises a traditional and/or commercially manufactured Drift Trike frame and components.

Through the term Drift Trike refers to the type of children’s toy/recreational cycle that was produced by companies such as:

– Huffy™
– Slider™
– Mambo™
– Big Wheel Slider™
– Crane™
– Green and Mean™
– Trek™
– Mod™
– Momentum™
– Side Swiper™

The Stock Trike class will consist of a Trike assembled out of the Box. The only allowable modification in this class is the addition of wheels with Hollow Blow Moulded construction, ie; wheels with No Mechanical roller bearing, being available at retailers of the trike and other brands of trikes and being of blow moulded plastic wheel construction.

Modified Drift Trike
For the purpose of the following specifications, a Modified Drift trike is any trike that utilises a traditional and or commonly manufactured Drift Trike as the structural component of the trike but has changed any part of the trike for purposes of enhancement or durability. All Stock Trikes with “any” modification will compete in this class

Modifications can include but are not limited to:
– Bearing rear wheels.
– Any brake other than original style “V” brake.
– Any front wheel other than 20” or 28” spoke wheel.
– Any modified seat or seat positioning.
– Any lowering,lengthening modification to the original frame structure. (Refer to dimensions chart)
– Any handle bar & head stem modification.
– Crank length modification.
– Any wheel sleeves and or manufactured rear wheels ie PVC, PE, nylon, steel and composite materials.
– Alloy rims front and rear.
– Any after market front wheel hubs
– Any aerodynamic aid.
– Any type of adjustable camber caster and toe in adjusters for rear wheels.
Custom Drift Trike
For the purpose of the following specifications, a Custom Drift Trike is any Trike that utilises a unique and specifically or deliberately manufactured frame as the structural basis of the trikes or any frame other than the traditional or commercially available trike frame.

Custom drift trikes frames can be manufactured to resemble traditional trike frames, but by the virtue of their origins of manufacture, will not be enough to classify them as a Modified Drift trike.

Custom Drift Trike frames by virtue of the design, can typically include or extend to longer, wider frames, rear swing arms and front forks as required by the design of the frame.

For the purpose of these specifications "Custom Drift Trikes" can include these components as required to support the design or structural integrity of the frame and are still classified as "Custom Drift Trikes"

Helmets
Please refer to the protective equipment for Street Luge, Classic Luge, Skeleton, Gravity Bike, In-Line Skate, Drift Bike, Drift Trike and Downhill Skateboard on Page 11 of this document.

Fairings
A fairing is a full or partial covering used to reduce aerodynamic drag or to protect the rider from the elements.

Number plates
Number plates are typically additional components added to a drift trike to identify and present a riders competing number or current national or international rider ranking.

Seat
The Seat is a structural addition to a drift trike used to support the weight of the rider by placing the buttocks in/on when in the riding position.

Ballast weight
Ballast weight is something that is added to a Drift Trike to alter its performance. Ballast can be can be added to change load distribution, handling characteristics or increase mass in a variety of combinations and is typically used to increase the overall weight of the Trike.

Wheelbase
The wheelbase of a Drift Trike is the distance between the centre of the front wheel and the centre of the back wheels or rotational centres of the front wheel and rear axle.

Trike Classification & competitive event classes
For the purpose of the following specifications it should be noted that the only level of classification provided is directed solely at the make or model of the trike used in competitive events.

Any method of classification related to the running of the event such as points classifications, skill classification, judged classification or time classification is a matter for the individual organisations or event organisers.

Classifications
For the purpose of competitive classification, there are three main classes of drift trikes permitted to compete competitively;

1. "Stock Drift Trike"
2. "Modified Drift Trike"
3. "Custom Drift Trike"

Each class should reflect the following specification so that the appropriate level of regulation be bought to the competitive environment and that as a consequence, a fair and competitive event culture is maintained and promoted.

For Drift Trikes with Aerodynamic enhancements and fairing there is only one class to compete in that being the "Custom Drift Trike" class.
THE UNIVERSAL CODE 2012/2013

DRIFT TRIKE SPECIFICATIONS

Specification
The following specifications pertain to all of the classes as outlined. Please consider these specifications when building, developing or preparing your Drift Trike for competition.

Frames
All Drift Trike frames must be free from cracks and rust, frames may be either “round”, “oval” or “box section” design. Rigidity and strength of design must sustain the weight of a registered rider of +50Kg’s.

These factors must be proved to the technical inspector of the proposed event by the registered rider by sitting on the Drift Trike and “bouncing” on the Trike in order to demonstrate the frames structural integrity.

A technical inspector at a given event may determine other methods of ensuring a frames structural integrity (without damage or stress to the frame) and this will be at their discretion.

Free wheeling pedal hub “FWPH”
This is the classification given to the mechanical drive system on a Drift Trike with an Internal clutch type mechanism designed to propel when pedalled and freewheel when optimum speed reached.

The maximum pedal/crank length is 10cm/4inches from centre of pedal thread to centre of FWPH axle the material can be steel or aluminium “NO” composite materials allowed this is for all 16”, 20” and 24” wheels.

Gravity Drift Trike
This is the classification given to a Drift Trike that does not have a pedal-able free wheeling hub to propel the trike from a stand start propel is done in such a way like a skate board by means of “KICK” and “PUSH”.

Regulations will be implemented to the allowable repetitions of kick, push propulsion method at each event at the competitors briefing not to disadvantage “FWPH” competitors.

“LOCKED” axles.
When the Two Rear wheels turn relative to each other by mechanical link. “Spool”, “Locked”, “Locker”.

Weight
The total weight of the complete race/ride ready Drift Trike cannot exceed 28kg/62lbs (No Allowances)

Weight ballast
Solid weight ballast may be secured to the Drift Trike frame via bolts suitable to safely secure said ballast. See above specifications concerning total weight requirements to determine your appropriate threshold of additional weight ballast. Body ballast is not permitted under any circumstances.

Technical Inspection Officers are charged with responsibility to make thorough inspections of weight installation to make sure all meet safety requirements.

Wheelbase
The wheelbase of a Drift Trike cannot exceed 130cm/51-1/8inches from the centre of the rotational front hub to the centre of the rotational axle at the rear

Wheel Track
The maximum width of a Drift Trike shall not exceed 110cm/44inches outside of rim to outside of rim, also the overall width will not exceed the same dimension.

Ground clearance
The minimum ground clearance is 4cm/1.5inches for frames.

Fairing and fearing classification
For the purpose of the following specification, custom or standard fairings, made of any material and that provide any aerodynamic advantages or reduce aerodynamic drag should be classified as a “fairing” by the Technical Inspection officer or Technical Safety Officer at any organised competitive event.

Should an Event Organiser, Technical Inspection Officer or Technical Safety Officer determine that there are not enough eligible Trikes to run a given classification as outlined above, then each will have at there discretion, the power to reclassify a rider and Drift Trike at the time of entry, inspection or prior to the commencement of the event.

Furthermore each officer or event organiser will have the power to request that “appropriate and “reasonable” modifications be made (e.g. the removal of fairing or modification) to ensure that the trike and rider are classified in accordance with event classifications and rider numbers.
“Appropriate” and Reasonable” modifications will/can only be requested where there is no temporary or permanent damage made to the Drift Trike.

Rider will be required to undertake the required modifications so as to ensure no damage is made to the Drift Trike and that their Trike conforms to the classification required of the event. Each rider must then resubmit their Trike to the Technical Inspection Officer or Technical Safety Officer for Technical approval.

Front fairing
Handle bar/front mini fairing is permitted in the Modified Class and/or Custom class and are to be no bigger then 30cm/12 inches x 30cm/12 inches. Their mounting position, design and shape are at the rider’s discretion and will have the riders number and national or international rider ranking displayed.

Full enclosed front fairing
Large front full enclosure fairings is only permitted in the Custom Class and are not to extend more then 55cm /22inches in front of the rotational centre of the rear axle and 20cm/8 inches behind the rotational centre of the rear axle at the same time the rear fairing can not extend beyond the width of the rear wheels and no higher then the top of the seat and under the riders legs.

The mounting position, design and shape are at the rider’s discretion and will have the riders number and national or international rider ranking displayed on the rear of the seat or behind the riders back in clear to read as per ruling.

Number plate fairing
Are typically additional components added to a Gravity Trike to identify and present a riders competitive or event number, national and international rider ranking and are permitted to compete in the Modified or Custom class (as outlined in the fairing sizes). Number identification at a competitive event should therefore be made on both sides and back of the riders helmet and /or in accordance with the Technical Inspection Officer or Technical Safety Officers requirements.

Rear Fairing
Rear fairings are only permitted in the Custom Class and are not to extend more than 55cm /22inches in front of the rotational centre of the rear axle and 20cm/8 inches behind the rotational centre of the rear axle at the same time the rear fairing can not extend beyond the width of the rear wheels and no higher then the top of the seat and under the riders legs.

The mounting position, design and shape are at the rider’s discretion and will have the riders number and national or international rider ranking displayed.

Fairing finishing
All fairing edges must be covered or, as a minimum safety standard, sanded or polished so the edge of the fairing is “rounded”. No fibreglass “fibres”, “knicks”, “sharpness” or any “abrasiveness” which may cause danger to any rider on the event competing track are permitted. These factors must be proved to the Technical Inspector of the proposed event by the registered rider and subsequently tested by the technical Inspector by running a bare hand over the edge of the fairing.

Fairing construction may be of any material which offers the same protection and safety to any rider using the event competing track that is of a standard of “4oz composite construction/layout offers.” Exotic composite” fairings are permitted, however Carbon Fibre and Carbon Fibre/Kevlar combinations MUST be used in a “sandwich” construction method, i.e. A layer of CSM, which may include 50g tissue, must be layered on either side of the “Exotic” material thus forming a “sandwich” layup. Aluminium fairings are permitted, with a minimum wall thickness of 2mm with all radiuses and edges of a minimum 5mm radius.
Brakes
All styles/design of Drift Trike must have working front brake or brakes. The addition of rear brakes is not mandatory but are at the discretion of the rider, disc brakes are recommended, however not mandatory.

The basic requirement for any braking system presented to the event Technical Inspection is that the rider MUST be able to bring the Drift Trike to a full stop, from the speed of 100kph/60mph, within 100m/300ft. Custom braking systems are permitted, however it is up to the rider to prove the braking ability of the custom braking system to the Technical Inspector, either prior to, or at the time of, tech inspection at the proposed event.

Wheel Coverings
Disc wheel covers are permitted on all drift trike classes for safety reasons but it is at the discretion of the rider to weather they install them.

Front Wheel Size
Wheel size cannot exceed 51cm/20 inches in the stock class, and can not exceed 60cm/24inches in the modified and Custom class.

Rear wheels sizes
Stock Class: Any blow moulded wheel readily available at trike retail stores made of blow moulded hollow construction with no mechanical bearing.

Modified & Custom class.
The construction of the rear wheels shall be no smaller than 10cm/4inches and a maximum of 30cm/12inches the minimum width of rear wheel sleeves will be 10cm/4inches and the maximum of 15cm/6inches the thickness of the sleeves is not regulated but the overall weight of the trike and maximum wheels sizes of the trike must be adhered too.

Wheel design
A minimum of three (3) spoke wheels design is mandatory. The maximum permissible gap in the spokes is 10cm/4 inches for safety reasons to prevent objects and limbs from entering the rotation of the spokes. The integrity of the styles of wheel/wheels MUST be proved to the event Technical Inspector either prior to, or at the time of the proposed technical Inspection skyway tuffs of mongoose plastics will not qualify (refer to wheel coverings above) for solutions to large spoked rims

Wheel construction
Wheel construction must be of a sealed bearing type (except stock class) and made of a structure that is deemed safe by the Technical Officer at the technical inspection and must meet the demands of lateral and radial "G" forces exerted during the corse of the event.

Axle construction
Axles of "stock Class" Drift trikes must be from original manufacturer size and length and must not be bent at the time of Technical Inspection, the axle must have fasteners with locking system be that of a clip, pin, nylock™ nut or locking nut system

Axles of a Custom class must not exceed 3.5cm/1.38inches thick, its construction can be hollow or solid and the axle/wheel locking mechanism must not protrude past the outer edge of the wheel.

The integrity of the wheel retaining component is at the discretion of the Technical Inspector/Officer either prior to or at the technical inspection

"LOCKED" axles (when the two rear wheels turn relative to each other by mechanical link), Spool, Locked, Locker. These types of axle configuration are only allowed to compete in the modified and custom classes, this is a modification and not permitted to compete in the stock class.

Sleeve attachment
Most sleeves are retained/fastened buy installation over a pneumatic tyre and held on by the inflation pressure of the pneumatic tyre, also bonding, screwing and glueing compounds can be used, but at the discretion of the Technical Officer either prior to, or at the technical Inspection

Sleeve Condition
All compounds of Sleeves are to be of a thickness and strength that can stand up to the impact and pressures of Drift Tricking in multiple surface conditions the edges of the sleeves must be smooth with no sharp or jagged edges and the and will be at the discretion of the Technical officer prior to,or at the time of the Technical Inspection.
THE UNIVERSAL CODE 2012/2013

DRIFT TRIKE SPECIFICATIONS

Tyres
Tyres must be in good condition, with no cracks or excessive wear visible on any part of the tyre. Custom tyres are permitted, however structural integrity of custom/non-commercial tyres must be proven to event technical Inspector either prior to, or at the time of the proposed event technical inspection.

Foot pegs
Foot pegs, at or near the front axle are required to provide stability for the rider during competition and to rest feet on for gravity drift trike. Foot pegs minimum size requirement is 3cm/1 3/16inches and be constructed of ferrous metal or plastic. Secured with NO visible cracks and of smooth appearance on the end without sharp edges.

Handle bars
Handlebar design is open to the rider in as much as said design proves no danger to ANY rider on the proposed event competition track. The handle bars cannot exceed the width of the rear wheels width of the Drift Trike. Handle bar design must be secure via bolts suitable to safely secure said handlebars and bar ends will have plastic or aluminium end caps free of sharp edges.

Seating Position
Seat design is open to the rider in as much as the seat design/material proves no danger to yourself or any other person on the track seats that prevent rider from sliding off to the side and coming into contact with the rotating wheel is paramount. The use of school seats is ok if the seat has some sort of contours to its construction and or gripping element like foam to stay seated properly.

The seat must be securely mounted to the Drift Trike chassis, via a bolt system suitable to safely secure said seat, with no bolts protruding to cause injury to competitors this will be monitored at technical inspections for everyone’s safety. Tape, of any description, and/or cable ties, zip ties and metal strapping are not allowed as a system of securing the seat to the Drift Trike.

Number Identification
Number identification at a competitive event should be made on both sides and back of a riders helmet and/or in accordance with the technical inspection officer or the technical safety officer requirements.

Numbers must be a minimum of seven point six centimetres 7.6cm/3 inches tall. The number area and number must be of contrasting colours and highly visible from six metres 6m/20 feet away. Some promoters may issue a bib panel with a number other then the your competing number or international rider ranking.

Adjustable rear axle components
Any rear wheel hub stub Go kart style Camber, Caster and toe adjustments are only allowed in the Custom class these give fine tuning of the wheels/sleeve road contact.

If any component is deemed not safe the rider will replace or fix the problem and re submit there trike to the a Technical officer for technical inspection to have the problem rectified before returning to inspection to get clearance to ride

Competitive race formats will be to the discretion of the Event Organiser but disciplines such as the following are permitted: 2 up dual drifting judged on points and performance, time trials in duels, quad duals and group. NASCAR, speedway type rolling start for group and duals, GP/F1 start, Le Mans start, on multiple point scoring systems and knockout elimination
CHAPTER 11

RACING FORMATS AND PROCEDURES
RIDER STARTING TECHNIQUES
START LINE INFRINGEMENTS
INCLEMENT WEATHER
FLAG DISTINCTION
Racing Formats and Procedures *

Practice
Racers will be afforded as much “Practice” time as possible, to familiarize themselves with the proposed event race track. Riders must complete a minimum of two(2) practice runs during this time period. During practice officials, as well as other rider’s, will assess the standard of riding of fellow rider’s, especially those new riders to either racing in general, or new to the event race track.

Qualifying
In the case of standard “cable, trip line” timing systems, riders will be given two attempts to try and qualify for the proposed event.

Riders will be sent one at a time down the race track, with their fastest time being used to seed them into the proposed event race track. If the timing system will allow, riders will be sent, one at a time, every 10 seconds, or as fast as the system will allow, in as much as this procedure offers no danger to any rider on the proposed event race track.

If the timing system is “chip” based, i.e. the rider wears a personalized chip on his/her person and there time is automatically recorded and correlated, then rider’s will be afforded as many runs as possible over a set time to try and qualify for the proposed event.

Riders may be sent off in staggered groups of four, with a minimum time gap of 15 seconds between the release of each group. The riders individual fastest time will be used to seed them into the proposed event. Riders will be given the same amount of qualifying run attempts in order to gain their top two times.

Dual (2 riders)
In this format, two(2)riders compete against each other in a single elimination, head to head heat/race. Single elimination means that the first rider across the finish line progresses to the next round, while the second place finisher is eliminated from the event.

The process continues through the heats, semifinals and then the finals, which will be between the last two remaining racers. In the case of a “Tied” final between the riders, the final race will be re-run, and in the unlikelihood that a “Tied” scenario occurs again, the final winner will be determined by qualifying time, i.e. the highest placed qualifying rider wins.

Mass (4 riders)
In this format, four(4) riders compete against each other in a single elimination heat/race, with the top two(2) place finishers progressing through to the next round, and the 3rd/4th place finishers being eliminated from the event.

This process continues through the heats, semifinals and then the finals, which will be between the last four remaining racers. In the case of a “Tied” final between any number of the four finalists, the rider with the fastest qualifying time will win the respective “Tied” position.

Le Mans (2 or 4 riders)
In this format, riders place their respective vehicle at the start line, with riders standing a minimum of 10 meters/30ft behind their vehicles. The Starter will say “Riders Ready”, “Riders Set”, at which time no movement will occur from any rider. The Starter will then say “Go”, at which time the riders will run to their respective vehicle, and begin to race.

Any rider who hinders another rider during the start procedure, in any way, shape or form, either by blocking, pushing or holding another rider, will be automatically disqualified. It is the responsibility of the Start Line Judge to monitor and control any infringements during the start.

Repercharge
The Organizers of any proposed event may choose to stage a “repercharge” event for riders, i.e. a series of rounds for the losers of the main event. All riders who have qualified for said event, will race in the first round, or “Heat 1”.

The winners of this round continue, as per a normal/standard heat series, i.e. in Round 2 the winners progress to the next round while the losers of Round 2 are eliminated. This continues on until a final is held for that “tree” or “series of heats”.

The losers of Heat 1, form the “repercharge” brackets. They go into the “Repercharge Round 2”, with the winners progressing onto the next round, while the losers are eliminated. This continues until a final heat brings the repercharge round to a conclusion.

Organisers have two options in deciding an “Event winner”, ie, the final winner/s from the repercharge rounds to give an eventual “event winner”.

The other option available to organisers is to have the winner of the main event as the overall winner, placing 1st, with the winner of the repercharge rounds placing 2nd for the event.

The 2nd place getter in the main event becomes the event 3rd place getter, with the 2nd place getter from the repercharge rounds becoming the overall event 4th placed rider. This continues down through the heats to give the overall event placings.

*These following formats are only suggestions by the Universal Code as possible formats. Event organisers have the option of using any format which best suits their respective track and rider needs.
Street Luge/Classic Luge: The rider sits on the Luge, feet forward, and when the Starter releases the rider from the start line the rider paddles with both hands for the maximum allowed paddle distance, then lays back on the luge and begins racing/riding.

The only variance in this technique is that the rider may use his feet to gain momentum as well as his/her hands, or may tuck one foot up underneath his/her leg whilst starting, then pointing the bent leg forward once they are in the supine position. A “Stand-up” style start is not allowed, neither is laying in a “head first” position.

Stand-up Skateboard: Riders stand with one foot on their skateboard, with all wheels firmly on the ground just behind the start line, and when the Starter releases the rider from the start line he/she pushes for the set/allowable push distance before the rider places both feet onto their board and begins racing.

Inline Skate: The skater stands just behind the start line, and when the Starter releases the skater they push for the set/allowed push distance before racing.

Gravity Bike: The rider must sit on or be mounted upon their Gravity Bike and be prepared to push their Gravity Bike on or just behind the indicated starting line.

When the Starter releases the riders, the rider pushes themselves and their bike for a set or permissible distance and within the indicated starting lanes/lines as established by the Starter or event organisers. Once both the bike and rider are over the starting line, racing has begun.

Skeleton: The rider may start in two(2) starting styles: the rider lays on his/her board, head first, just behind the start line. When the Starter releases the riders, they paddle with both hands to gain momentum for the set/allowed push distance, then begin racing.

Alternatively, the rider may place both hands on the front of their board, with one knee on the deck of the board in a semi crouch position, and when the Starter releases the riders, they may push with their other leg to gain momentum for the set/allowed push distance. When the rider finishes paddling, they lay on their board and begin racing.
Start Line Infringements
At the start of each race/heat/final, there is a "lane" which extends past the actual start line, whether it's marked on the event race track for a set distance, or "perceived" by the line taken by the starting riders.

The start area has a set of rules which apply to all starts of any heat/race/final, which applies to all disciplines.

If a rider begins forward movement, after the Starter has the riders at "Riders Set", that will be deemed as a false start by said rider, whether the rider has made a pre-emptive crossing of the start line or not. Two false starts attributed to the same rider in the respective heat/race/final, will see the rider responsible automatically disqualified.

Once the Starter has released the riders, no rider will hinder, or interfere with another rider in any way, shape or form, i.e. they will not hold, block, deliberately bump so as to cause another rider to adjust line or body movement.

If a rider commits this violation, and is deemed a violation by the Start Line Judge, that rider will be automatically disqualified.

Inclement Weather
An event will be cancelled/postponed due to inclement weather, i.e. weather which offers an unacceptable level of danger to the riders.

The decision to cancel/postpone an event, or one of the stated "race days", will be discussed between the Event Organizer, the Technical Safety Officer and the Technical Inspector.

The final decision will be made by the Technical Safety Officer. Riders, of any discipline, involved in the proposed event, will take no part in the decision making process, i.e. NO rider vote will be taken, as this action makes null and void ANY insurance policy which is created by any current, global insurance company.

Flag Distinction
- **Green Flag:** the course is open and clear of any dangers, to riders, spectators or any track workers.
- **Yellow Flag:** the riders may continue riding, however no rider may intentionally pass or further their advancement of heat/race/final positions at the time of the Yellow Flag being presented. If any rider advances their position intentionally they will be automatically disqualified.
- **Waved Yellow Flag:** Riders must slow to approx. 10kph with no passing, in preparation for a Red Flag scenario.
- **Red Flag:** ALL RIDERS STOP!!! Riders will proceed to the nearest Corner Marshall. Any rider who does not stop in an acceptable time/distance, will be automatically disqualified. In the case of a "Red Flag", a "Re-start" of the stopped heat/race/final will occur, once the event race track is presented with a "Green Flag".

© The Universal Code
Bumping is a natural part of racing, and is to be expected. However, intentional bumping to alter the natural end result of a heat/race/final will not be tolerated, nor condoned, in any way, shape or form.

Racers who deliberately “bump” another rider in order to cause the other rider to change their “racing line” or loose speed will be automatically disqualified.

Overtaking, or performing a pass, the lead rider assumes the responsibility of NOT closing out or “shutting down” the line of the other rider. In turn, the rider attempting the pass has the responsibility of not “bumping” the lead rider to such an extent as to cause the lead rider to alter his/her race line.

To this end, the following rule applies, and will be used as the guide for a disqualification decision; In a passing move, whether it is the entry, apex or exit of a corner, it is assumed that the lead rider will be aware of the rider attempting the pass, on the inside or outside of the then Lead rider, once the passing riders feet are level with the lead riders eyes. In other words, the lead rider would be aware of the passing rider in his/her peripheral vision.

At this point of the passing move, the lead rider must allow the passing rider to continue making his move, and in no way, shape or form alter the passing riders “race/passing line”.

If either rider can be proved to effect a change of “race line” to the other rider in a negative fashion, i.e. causing the non-offending rider to crash or lose speed, the offending rider will be automatically disqualified.

This rule also applies to passing moves in a straight line.

In the event of a crash, causing a rider to be parted from his/her vehicle, the rider will pick up his/her vehicle and may place his/her vehicle on the event race track, at a point directly parallel to the point of vehicle retrieval.

The rider WILL NOT advance his/her position by moving forward of the point of retrieval in order to better their position and create a possible unfair advantage over any other rider who may have been involved in the particular incident. If the rider DOES advance their position from the point of retrieval, the offending rider will be automatically disqualified.

After a crash, and riders begin riding/racing away from the crash scene, they may only use the technique allowable at the start line to gain momentum for their respective discipline. ANY variance on this technique will result in the rider being automatically disqualified.

For example, a street luge racer MUST sit on his/her board, and using both/one hand and paddle away from the site. Riders WILL NOT use hay bales, sticks, branches, another rider or any immovable object to assist them in gaining momentum in the above mentioned “crash scenario”.

An offending racer will be automatically disqualified. A rider, resuming racing after a crash, may not interfere with another rider in any way, shape or form by holding them back, blocking, deliberately riding slowly to assist another rider or cause another rider to alter his/her course as the second rider resumes riding/racing.

Offending riders will be disqualified. If a supporter of any particular Gravity Racer at any proposed event interfere with or hinders another rider/racer, the racer associated with the offender will be held responsible for their supporters actions, and will be automatically disqualified.
CHAPTER 13

STARTING BOX GRID
RACING BRACKETS
THE UNIVERSAL CODE 2012/2013

STARTING BOX

Starting line information

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Start line width</td>
<td>10cm</td>
</tr>
<tr>
<td>Lane width</td>
<td>80cm</td>
</tr>
<tr>
<td>Boundary Lines</td>
<td>5cm</td>
</tr>
<tr>
<td>Push Zone Length</td>
<td>9m</td>
</tr>
</tbody>
</table>

© The Universal Code
Should you have any questions, comments or suggestions in regards to The Universal Code we would love to hear from you.

For more information on insurance please contact The Universal Code administrator at:

General enquires
admin@theuniversalcode.com
The material contained on this document is for general discussion purposes only. You should not rely on any material contained on this document and the creators of this document accept no responsibility or liability whatsoever for any loss or damage you may suffer as a result or your reliance on any material in this document.

The creators of this document make no representations or warranties: (a) in relation to any of the material in this document (including any warranties as to the quality, accuracy, completeness or fitness for any particular purpose of such material). You should take your own precautions in this respect.

You agree that in no circumstances will the creators of this document be liable to you for any indirect, incidental, special and/or consequential losses or damages or loss of profits of whatever nature howsoever arising from: (a) the use of or access to, or any inability to use or access, this document or; (c) statements or conduct of any third party as a result of reading this document.